Copied to
clipboard

?

G = C24.34D10order 320 = 26·5

34th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.34D10, C10.282+ (1+4), (C2×D4)⋊6D10, C22≀C25D5, C22⋊C47D10, (C2×Dic5)⋊8D4, C23⋊D106C2, C20⋊D412C2, (D4×C10)⋊9C22, C242D57C2, D10⋊D414C2, C22⋊D2010C2, C22.41(D4×D5), Dic5⋊D44C2, (C2×D20)⋊20C22, (C2×C20).30C23, Dic5.16(C2×D4), C10.58(C22×D4), (C2×C10).136C24, C52(C22.29C24), (C4×Dic5)⋊16C22, C2.30(D46D10), C23.D516C22, D10⋊C413C22, Dic5.5D413C2, (C2×Dic10)⋊21C22, C10.D411C22, C23.11D103C2, (C22×C10).10C23, (C23×C10).69C22, (C2×Dic5).61C23, (C23×D5).44C22, (C22×D5).55C23, C22.157(C23×D5), C23.109(C22×D5), (C22×Dic5)⋊15C22, C2.31(C2×D4×D5), (C2×C4×D5)⋊9C22, (C5×C22≀C2)⋊7C2, (C2×D42D5)⋊7C2, (C2×C10).55(C2×D4), (C2×C5⋊D4)⋊9C22, (C22×C5⋊D4)⋊10C2, (C5×C22⋊C4)⋊7C22, (C2×C4).30(C22×D5), SmallGroup(320,1264)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.34D10
C1C5C10C2×C10C22×D5C23×D5C23⋊D10 — C24.34D10
C5C2×C10 — C24.34D10

Subgroups: 1406 in 334 conjugacy classes, 103 normal (39 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×10], C22, C22 [×2], C22 [×28], C5, C2×C4, C2×C4 [×2], C2×C4 [×13], D4 [×22], Q8 [×2], C23 [×2], C23 [×2], C23 [×11], D5 [×3], C10, C10 [×2], C10 [×5], C42 [×2], C22⋊C4, C22⋊C4 [×2], C22⋊C4 [×7], C4⋊C4 [×2], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×D4 [×16], C2×Q8, C4○D4 [×4], C24, C24, Dic5 [×4], Dic5 [×3], C20 [×3], D10 [×13], C2×C10, C2×C10 [×2], C2×C10 [×15], C42⋊C2, C22≀C2, C22≀C2 [×3], C4⋊D4 [×4], C4.4D4 [×2], C41D4 [×2], C22×D4, C2×C4○D4, Dic10 [×2], C4×D5 [×2], D20 [×2], C2×Dic5 [×3], C2×Dic5 [×6], C2×Dic5 [×2], C5⋊D4 [×16], C2×C20, C2×C20 [×2], C5×D4 [×4], C22×D5, C22×D5 [×2], C22×D5 [×4], C22×C10 [×2], C22×C10 [×2], C22×C10 [×4], C22.29C24, C4×Dic5 [×2], C10.D4 [×2], D10⋊C4 [×4], C23.D5, C23.D5 [×2], C5×C22⋊C4, C5×C22⋊C4 [×2], C2×Dic10, C2×C4×D5, C2×D20 [×2], D42D5 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×2], C2×C5⋊D4 [×8], C2×C5⋊D4 [×4], D4×C10, D4×C10 [×2], C23×D5, C23×C10, C23.11D10, C22⋊D20, D10⋊D4 [×2], Dic5.5D4 [×2], C23⋊D10, Dic5⋊D4 [×2], C20⋊D4 [×2], C242D5, C5×C22≀C2, C2×D42D5, C22×C5⋊D4, C24.34D10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, 2+ (1+4) [×2], C22×D5 [×7], C22.29C24, D4×D5 [×2], C23×D5, C2×D4×D5, D46D10 [×2], C24.34D10

Generators and relations
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=1, f2=d, ab=ba, eae-1=faf-1=ac=ca, ad=da, bc=cb, ebe-1=bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de-1 >

Smallest permutation representation
On 80 points
Generators in S80
(1 63)(2 31)(3 65)(4 33)(5 67)(6 35)(7 69)(8 37)(9 61)(10 39)(11 76)(12 50)(13 78)(14 42)(15 80)(16 44)(17 72)(18 46)(19 74)(20 48)(21 43)(22 71)(23 45)(24 73)(25 47)(26 75)(27 49)(28 77)(29 41)(30 79)(32 59)(34 51)(36 53)(38 55)(40 57)(52 68)(54 70)(56 62)(58 64)(60 66)
(1 24)(2 74)(3 26)(4 76)(5 28)(6 78)(7 30)(8 80)(9 22)(10 72)(11 33)(12 51)(13 35)(14 53)(15 37)(16 55)(17 39)(18 57)(19 31)(20 59)(21 70)(23 62)(25 64)(27 66)(29 68)(32 48)(34 50)(36 42)(38 44)(40 46)(41 52)(43 54)(45 56)(47 58)(49 60)(61 71)(63 73)(65 75)(67 77)(69 79)
(1 57)(2 58)(3 59)(4 60)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 27)(12 28)(13 29)(14 30)(15 21)(16 22)(17 23)(18 24)(19 25)(20 26)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)(37 70)(38 61)(39 62)(40 63)(41 78)(42 79)(43 80)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 61)(10 62)(11 49)(12 50)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 80)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 58)(32 59)(33 60)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 57)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 62 63 10)(2 9 64 61)(3 70 65 8)(4 7 66 69)(5 68 67 6)(11 30 49 79)(12 78 50 29)(13 28 41 77)(14 76 42 27)(15 26 43 75)(16 74 44 25)(17 24 45 73)(18 72 46 23)(19 22 47 71)(20 80 48 21)(31 38 58 55)(32 54 59 37)(33 36 60 53)(34 52 51 35)(39 40 56 57)

G:=sub<Sym(80)| (1,63)(2,31)(3,65)(4,33)(5,67)(6,35)(7,69)(8,37)(9,61)(10,39)(11,76)(12,50)(13,78)(14,42)(15,80)(16,44)(17,72)(18,46)(19,74)(20,48)(21,43)(22,71)(23,45)(24,73)(25,47)(26,75)(27,49)(28,77)(29,41)(30,79)(32,59)(34,51)(36,53)(38,55)(40,57)(52,68)(54,70)(56,62)(58,64)(60,66), (1,24)(2,74)(3,26)(4,76)(5,28)(6,78)(7,30)(8,80)(9,22)(10,72)(11,33)(12,51)(13,35)(14,53)(15,37)(16,55)(17,39)(18,57)(19,31)(20,59)(21,70)(23,62)(25,64)(27,66)(29,68)(32,48)(34,50)(36,42)(38,44)(40,46)(41,52)(43,54)(45,56)(47,58)(49,60)(61,71)(63,73)(65,75)(67,77)(69,79), (1,57)(2,58)(3,59)(4,60)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,61)(39,62)(40,63)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,61)(10,62)(11,49)(12,50)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,80)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,58)(32,59)(33,60)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,62,63,10)(2,9,64,61)(3,70,65,8)(4,7,66,69)(5,68,67,6)(11,30,49,79)(12,78,50,29)(13,28,41,77)(14,76,42,27)(15,26,43,75)(16,74,44,25)(17,24,45,73)(18,72,46,23)(19,22,47,71)(20,80,48,21)(31,38,58,55)(32,54,59,37)(33,36,60,53)(34,52,51,35)(39,40,56,57)>;

G:=Group( (1,63)(2,31)(3,65)(4,33)(5,67)(6,35)(7,69)(8,37)(9,61)(10,39)(11,76)(12,50)(13,78)(14,42)(15,80)(16,44)(17,72)(18,46)(19,74)(20,48)(21,43)(22,71)(23,45)(24,73)(25,47)(26,75)(27,49)(28,77)(29,41)(30,79)(32,59)(34,51)(36,53)(38,55)(40,57)(52,68)(54,70)(56,62)(58,64)(60,66), (1,24)(2,74)(3,26)(4,76)(5,28)(6,78)(7,30)(8,80)(9,22)(10,72)(11,33)(12,51)(13,35)(14,53)(15,37)(16,55)(17,39)(18,57)(19,31)(20,59)(21,70)(23,62)(25,64)(27,66)(29,68)(32,48)(34,50)(36,42)(38,44)(40,46)(41,52)(43,54)(45,56)(47,58)(49,60)(61,71)(63,73)(65,75)(67,77)(69,79), (1,57)(2,58)(3,59)(4,60)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,61)(39,62)(40,63)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,61)(10,62)(11,49)(12,50)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,80)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,58)(32,59)(33,60)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,62,63,10)(2,9,64,61)(3,70,65,8)(4,7,66,69)(5,68,67,6)(11,30,49,79)(12,78,50,29)(13,28,41,77)(14,76,42,27)(15,26,43,75)(16,74,44,25)(17,24,45,73)(18,72,46,23)(19,22,47,71)(20,80,48,21)(31,38,58,55)(32,54,59,37)(33,36,60,53)(34,52,51,35)(39,40,56,57) );

G=PermutationGroup([(1,63),(2,31),(3,65),(4,33),(5,67),(6,35),(7,69),(8,37),(9,61),(10,39),(11,76),(12,50),(13,78),(14,42),(15,80),(16,44),(17,72),(18,46),(19,74),(20,48),(21,43),(22,71),(23,45),(24,73),(25,47),(26,75),(27,49),(28,77),(29,41),(30,79),(32,59),(34,51),(36,53),(38,55),(40,57),(52,68),(54,70),(56,62),(58,64),(60,66)], [(1,24),(2,74),(3,26),(4,76),(5,28),(6,78),(7,30),(8,80),(9,22),(10,72),(11,33),(12,51),(13,35),(14,53),(15,37),(16,55),(17,39),(18,57),(19,31),(20,59),(21,70),(23,62),(25,64),(27,66),(29,68),(32,48),(34,50),(36,42),(38,44),(40,46),(41,52),(43,54),(45,56),(47,58),(49,60),(61,71),(63,73),(65,75),(67,77),(69,79)], [(1,57),(2,58),(3,59),(4,60),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,27),(12,28),(13,29),(14,30),(15,21),(16,22),(17,23),(18,24),(19,25),(20,26),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69),(37,70),(38,61),(39,62),(40,63),(41,78),(42,79),(43,80),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,61),(10,62),(11,49),(12,50),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,80),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,58),(32,59),(33,60),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,57)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,62,63,10),(2,9,64,61),(3,70,65,8),(4,7,66,69),(5,68,67,6),(11,30,49,79),(12,78,50,29),(13,28,41,77),(14,76,42,27),(15,26,43,75),(16,74,44,25),(17,24,45,73),(18,72,46,23),(19,22,47,71),(20,80,48,21),(31,38,58,55),(32,54,59,37),(33,36,60,53),(34,52,51,35),(39,40,56,57)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
4000000
010000
00174000
0012400
0000241
00004017
,
100000
010000
0040000
0004000
0000400
0000040
,
4000000
0400000
0040000
0004000
0000400
0000040
,
010000
100000
000077
00003440
007700
00344000
,
0400000
100000
00004034
000001
001700
0004000

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,17,1,0,0,0,0,40,24,0,0,0,0,0,0,24,40,0,0,0,0,1,17],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,7,34,0,0,0,0,7,40,0,0,7,34,0,0,0,0,7,40,0,0],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,7,40,0,0,40,0,0,0,0,0,34,1,0,0] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J5A5B10A···10F10G···10R10S10T20A···20F
order12222222222244444444445510···1010···10101020···20
size11112244420202044410101010202020222···24···4888···8

50 irreducible representations

dim11111111111122222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5D10D10D102+ (1+4)D4×D5D46D10
kernelC24.34D10C23.11D10C22⋊D20D10⋊D4Dic5.5D4C23⋊D10Dic5⋊D4C20⋊D4C242D5C5×C22≀C2C2×D42D5C22×C5⋊D4C2×Dic5C22≀C2C22⋊C4C2×D4C24C10C22C2
# reps11122122111142662248

In GAP, Magma, Sage, TeX

C_2^4._{34}D_{10}
% in TeX

G:=Group("C2^4.34D10");
// GroupNames label

G:=SmallGroup(320,1264);
// by ID

G=gap.SmallGroup(320,1264);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,219,675,297,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=1,f^2=d,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^-1>;
// generators/relations

׿
×
𝔽